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The critical-layer analysis of the nonlinear resonant-triad interaction by Goldstein
& Lee (1992) is extended to include viscous effects. A generalized scaling which
is valid both for the quasi-equilibrium and non-equilibrium critical-layer analyses
in zero- or non-zero-pressure-gradient boundary layers is obtained. A system of
partial differential equations which governs the fully coupled non-equilibrium critical-
layer dynamics is obtained and it is solved by using a numerical method. Amplitude
equations and their viscous limits are also presented. The parametric-resonance growth
rate of the non-equilibrium critical-layer solution with finite viscosity is larger than
that of the viscous-limit quasi-equilibrium solution. The viscosity delays both the
onset of the fully coupled interaction and the ultimate downstream location of the
singularity. The difference between the non-equilibrium critical-layer solution and the
corresponding quasi-equilibrium critical-layer solution becomes smaller, at least in
the parametric resonance region, as the viscosity parameter becomes large. However,
the non-equilibrium solution with finite viscosity always ends in a singularity at a
finite downstream position unlike the viscous-limit solution.

1. Introduction
Boundary-layer transition experiments usually involve spatially growing instability

waves whose initial two-dimensional and linear behaviour can persist over long
streamwise distance when the excitation levels are sufficiently small. But three-
dimensional effects eventually come into play, as evidenced by the appearance of
Λ-shaped structures in flow-visualization experiments. These structures can either
be aligned or staggered in alternating rows. It is now believed that the staggered
arrangement is the result of a resonant-triad interaction between a pair of oblique
subharmonic modes and the basic fundamental two-dimensional mode. This inter-
action was analysed for the case of viscous-dominated Tollmien–Schlichting-type
instabilities by Raetz (1959) and was studied in considerably more detail by Craik
(1971), who proposed that the unstaggered (or aligned) arrangement could also result
from a resonant-triad interaction, which would then involve a pair of oblique fun-
damental harmonic modes interacting with the small two-dimensional first harmonic
mode.

Since transition in technological devices usually occurs in a region of adverse
pressure gradient, Goldstein & Lee (1992) (hereafter referred to as G&L) analysed
the resonant-triad interaction in a boundary-layer flow with a relatively weak adverse
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pressure gradient. The wavelength in their analyses is therefore large, O(adverse
pressure gradient)−1/2, and their results show that the oblique mode does not affect
the plane wave until its amplitude exceeds that of the plane wave by a factor
of the wavenumber cubed. Wundrow, Hultgren & Goldstein (1994) also analysed
the adverse-pressure-gradient boundary layer, but with smaller initial oblique mode
amplitude than in G&L. The Blasius boundary-layer flow was studied by Mankbadi,
Wu & Lee (1993) and the boundary-layer flow with O(1) favourable pressure gradient
was studied by Wu (1993) in the quasi-equilibrium limit. Khokhlov (1993) studied
the parametric-resonance stage of the resonant-triad interaction. Wu, Lee & Cowley
(1993) and Wu (1995) considered the effects of finite viscosity in non-equilibrium
critical layers. They obtained the kernel functions and amplitude equations for the two-
oblique-mode and full resonant-triad interactions respectively. The integro-differential
equations for the instability wave amplitudes are of the same form as in the inviscid
case, but with viscous kernel functions. Asymptotic analyses of instability waves in
high-Reynolds-number flows, including critical-layer analyses, are reviewed by Cowley
& Wu (1994).

The type of critical layer that governs the interactions is determined both by the
type of problem and by the initial amplitudes of the instability waves. The growth
and mean convection (and also viscous) effects can enter the critical-layer dynamics
at the same order, which we refer to as the non-equilibrium critical-layer dynamics,
as in G&L. However, when the viscous effect becomes large, the mean convection
effect balances with the viscous effect inside the critical layer, which we refer to as
a (viscous) quasi-equilibrium (or viscous limit) critical layer, as in Mankbadi et al.
(1993) and Wu (1993).

Since most excitation devices tend to be two-dimensional, the initial oblique-mode
amplitudes should be much smaller than the initial plane-wave amplitude. The initial
nonlinear interaction will then be a secondary instability that leaves the plane-wave
growth rate unchanged while greatly enhancing the growth rate of the oblique modes.
This might be termed the ‘parametric resonance’ stage. The nonlinear critical-layer
studies mentioned above indicate that the initial nonlinear interaction produces no
critical-layer velocity jump at the fundamental frequency, which means that the two-
dimensional mode continues to grow at its initial linear growth rate, even when the
oblique modes become very large relative to the plane wave. This, in turn, allows
these latter modes to exhibit faster-than-exponential growth even when they are much
larger than the more slowly growing two-dimensional mode.

The non-equilibrium critical-layer analysis of G&L shows that the oblique modes
eventually react back on the two-dimensional mode, which might be termed the ‘fully
coupled’ stage. The corresponding ‘back-reaction’ term turns out to be quartic in the
oblique-mode amplitudes. The oblique modes also interact nonlinearly within their
common critical layer to produce a ‘self-interaction’ term which has a dramatic effect
on the subsequent instability-wave development. This term causes the instability
growth to increase beyond the faster-than-exponential growth of the parametric-
resonance stage and ultimately leads to a singularity at a finite downstream position.
In the non-equilibrium analyses of G&L, Wu (1992) and Wundrow et al. (1994), the
nonlinear interactions are completely confined to the critical layers.

As shown in Wundrow et al. (1994), the plane wave can become strongly nonlinear
within its own critical layer (as in Goldstein, Durbin & Leib 1987) before it is affected
by the oblique mode when the initial amplitude of the oblique mode, which is the only
difference in starting conditions between this and G&L’s analyses, is sufficiently small.
The growth of the oblique mode becomes dominated by the parametric-resonance
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interaction and occurs on a much shorter streamwise scale than that of the plane wave.
The oblique-mode amplitude continues to increase during the parametric-resonance
stage and eventually becomes large enough to react back on the two-dimensional
mode, which causes oblique and plane waves to evolve on the same shorter streamwise
scale. This fully coupled stage is governed by the same amplitude equation as in G&L
– but with the linear growth terms omitted.

The quasi-equilibrium analyses of Mankbadi et al. (1993) and Wu (1993) involve
viscous critical layers with the dominant nonlinear interactions taking place in an
intermediate diffusion layer that surrounds the critical layer and lies inside the
inviscid wall layer. There is no back-reaction effect on the plane wave which therefore
continues to grow linearly.

Goldstein (1994, 1995) shows that the initial parametric resonance growth of
quasi-equilibrium type in a Blasius boundary layer will be followed by the non-
equilibrium-type interaction before the self-interaction effect becomes important when
the initial oblique-mode amplitude is sufficiently (or exponentially) small at the start
of parametric resonance. This occurs because the growth rate continuously increases
during the parametric-resonance stage which causes the critical layer to become of
the non-equilibrium type by the time self-interaction effects come into play. The final
critical-layer stage is then of the fully coupled non-equilibrium type considered by
G&L rather than the quasi-equilibrium type of Mankbadi et al. (1993).

Wu, Leib & Goldstein (1997) show that a pair of oblique Tollmien–Schlichting
waves, which are initially linear, can evolve through several nonlinear stages when the
initial plane wave amplitude is smaller than that in Mankbadi et al. (1993). However,
the critical layer eventually becomes of the non-equilibrium type even though the
critical layers in previous stages are of the quasi-equilibrium type.

These recent studies indicate that the final nonlinear critical-layer stage is governed
by non-equilibrium dynamics rather than being dominated by viscous (i.e. quasi-
equilibrium) effects. The present study extends the resonant-triad critical-layer analysis
of G&L to include viscous effects. A generalized scaling which is valid for the fully
coupled critical-layer analyses of resonant-triad of long-wavelength small-growth-rate
instability waves in zero- or non-zero-pressure-gradient boundary layers is obtained.
A system of partial differential critical-layer equations governing the non-equilibrium
critical-layer dynamics is derived and solved numerically.

The overall plan of the paper is as follows. The problem is formulated in §2 and
the generalized scaling is presented in §3. A generalized non-equilibrium critical-layer
analysis is given in §4 to §6. The solutions in the main boundary layer are given in
§4. In §5 we show that the linear Tollmien solution for the inviscid wall layer can be
matched onto the solution of §4. The critical-layer equations and the jump conditions
are obtained in §6 and the upstream matching is discussed. The numerical method is
described in §7. Analytical solutions of the critical-layer equations and the resulting
amplitude equations (including their viscous limit) are summarized in §8. The Blasius
boundary layer flow is considered in §9 and matching with the initial linear critical
layer is discussed. The numerical results are given in §10.

2. Formulation
We suppose that the mean boundary-layer flow is two-dimensional and that the

local Reynolds number R∆(= U∞∆/ν), based on the local free-stream velocity U∞
and the local boundary-layer thickness ∆, is sufficiently large that the unsteady flow
is nearly inviscid in the main part of the boundary layer and is nearly unaffected
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by boundary-layer growth over the region in which nonlinear interaction takes place.
The mean flow velocity U and the total flow velocity u = {u, v, w} are normalized by
U∞, the streamwise, transverse, and spanwise coordinates x, y, and z, respectively, are
normalized by ∆, the pressure p is normalized by ρU2

∞, and the time t is normalized
by ∆/U∞. The base mean flow is nearly parallel and develops slowly on the long
viscous scale,

x3 = x/R∆. (2.1)

The upstream flow can start as a resonant triad of spatially growing linear instability
waves as in G&L, Mankbadi et al. (1993) and Wu (1993), or as a resonant triad of
linear and nonlinear instability waves (which are solutions of the preceding linear or
nonlinear stages) as in Wundrow et al. (1994) and Goldstein (1994). The resonant triad
is composed of a single two-dimensional mode of frequency ω and wavenumber α
and a pair of subharmonic oblique modes of frequency ω/2, streamwise wavenumber
nearly equal to α/2 and spanwise wavenumbers ±β.

The normalized complex wavenumber α is small and its imaginary part is much
smaller than its real part. It follows that each of the three modes must have a critical
layer at nearly the same transverse position, say yc, where the mean flow velocity U
is equal to the real part of their nearly common phase velocity.

3. Generalized scaling
The scaling in G&L was chosen so that the wavenumber scale σ corresponded

to the most rapidly growing linear instability mode in an adverse-pressure-gradient
boundary layer. We can generalize the scaling by not imposing that condition a priori.
If we introduce parameters σ, σr and σm for the small wavenumber (long wavelength),
the ratio of the small growth rate to the wavenumber and the non-equilibrium
effect, respectively, we can obtain a generalized scaling which is valid both for the
non-equilibrium and quasi-equilibrium critical layers. The mean convection effect
balances with the growth (and viscous, for the finite viscous case) effects (see (6.4) and
(6.25)) in the non-equilibrium critical layer (G&L), and with the viscous effect in the
quasi-equilibrium (or viscous limit) critical layer (Mankbadi et al. 1993; Wu 1993).

The non-equilibrium parameter m will be

0 6 m 6 r, (3.1)

where m is equal to zero when the critical layer is of the viscous-dominated (i.e.
quasi-equilibrium) type as in Mankbadi et al. (1993) and Wu (1993) and is equal to r
for the non-equilibrium critical layer considered in G&L. The generalized scaling can
be written as

α = σ[ᾱ+ O(σr)], c0 = σ[c̄+ O(σr)], β = σβ̄, yc = σYc, (3.2)

µ = σr−1µ̄

(
= R∆

dP

dx

)
, (3.3)

and

x1 = σr+1x, (3.4)

where σ characterizes the small wavenumber, c0 is the phase velocity of the two-
dimensional mode, ᾱ, c̄, β̄ and Yc are order-one real constants (which depend on σ)
and µ is the normalized mean pressure gradient. When µ̄ is an order-one real positive
constant, σr−1µ̄ � 1 characterizes a small adverse pressure gradient as in the G&L
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analysis. However, we now allow µ̄ to be non-positive in order to extend the scaling
to the important Blasius and favourable-pressure-gradient boundary layers.

As shown in G&L, Mankbadi et al. (1993), Wu (1993), and others, viscous ef-
fects will enter the critical-layer momentum equation while making only relatively
insignificant modifications to the external flow when the viscous parameter (Benney
& Bergeron 1969; Haberman 1972)

λ ≡ 1/(σ2r+m+4R∆) (3.5)

is order one.
When µ̄ is O(1) or r = 3 as in G&L, Mankbadi et al. (1993) and Wu (1993), the

linear-growth and parametric-resonance effects enter the oblique-mode critical-layer
dynamics at the same order if the amplitude scaling of the two-dimensional instability
wave ε2d is given by

ε2d = σ3r+m+1. (3.6)

The non-zero velocity jump across the critical layer for the non-equilibrium critical-
layer case (G&L) or across the diffusion layer for the quasi-equilibrium critical-layer
case (Mankbadi et al. 1993; Wu 1993) produced by the self-interaction between the
oblique modes will balance the corresponding growth rate term when

δ3d = σ(7r+2m)/3+1, (3.7)

where δ3d is a measure of the (common) amplitude of the oblique modes. The
nonlinear effects in the critical layer produce a mean flow correction term which is
periodic in the spanwise direction with the spanwise wavenumber equal to 2β, as
was first shown in Goldstein & Choi (1989). This term is large in the sense that its
magnitude

δ02 = δ3d/σ
(r−m)/3 = σ2r+m+1, (3.8)

is larger than or equal to the magnitude of the oblique waves.
The nonlinear interactions between instability waves occur within the thin critical

layer whose transverse coordinate scales like

η̄ =
y − yc

σ(2r+m)/3+1
. (3.9)

The quasi-equilibrium analyses of Mankbadi et al. (1993) and Wu (1993) show that
the nonlinearly generated mean flow interacts with the oblique modes in a diffusion
layer to produce the self-interaction term in the amplitude equation. The thickness of
this diffusion layer, which surrounds the critical layer, is given by

η̂ =
y − yc
σ(r+m)/2+1

. (3.10)

The viscous Stokes layer close to the wall contributes to the linear growth rate
when the viscous effects are large, as in the Blasius and favourable-pressure-gradient
boundary layers (Mankbadi et al. 1993; Wu 1993). The appropriately scaled transverse
coordinate for this layer is

ŷ =
y

σr+m/2+1
. (3.11)

The generalized scaling (3.2)–(3.11) is valid for the fully coupled critical-layer
analyses of resonant triads in zero- or adverse/favourable-pressure-gradient boundary
layers (with long-wavelength small-growth-rate instability waves). The diffusion-layer
thickness in (3.10) becomes the same as that of the critical layer in (3.9) when m = r or
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Figure 1. Multi-layer structure in boundary layers. I, main boundary layer; II, inviscid Tollmien
wall layer; III, critical layer; IV, diffusion layer; V, viscous Stokes layer.

equivalently when the critical layer is of non-equilibrium type. A schematic diagram
of the multi-layer structure is given in figure 1.

We can recover the scalings of previous studies described above by appropriately
choosing the parameters in the present scaling. As indicated in table 1, the adverse-
pressure-gradient boundary layer in G&L corresponds to the case when r = m = 3,
the Blasius boundary layer in Mankbadi et al. (1993) corresponds to the case when
r = 3 and m = µ̄ = 0 and the favourable-pressure-gradient boundary layer considered
by Wu (1993) corresponds to the case where r = 1 and m = 0. We can also recover the
scalings for the later fully coupled stage of the adverse-pressure-gradient boundary
layer with initially small subharmonic amplitude in Wundrow et al. (1994) by putting
r = m = 3/2 and µ̄ = λ = 0 and the later fully coupled stage of the Blasius boundary
layer considered in Goldstein (1994) by putting r = m = 2 and µ̄ = 0.

One of the new interesting scalings can be obtained by taking r = 3 and m = 0,
which is a version of order-one µ̄ of the quasi-equilibrium critical-layer scaling of
Mankbadi et al. (1993), as shown in table 1. This scaling applies to the boundary layer
with small non-zero pressure gradient, i.e. the adverse-pressure-gradient boundary
layer where the viscous effect is larger than in G&L or the boundary layer with
smaller favourable pressure gradient than in Wu (1993). We will show in §8 that the
governing amplitude equations are the same as those of Mankbadi et al. (1993) if
their linear growth rates are modified to include the pressure-gradient effect (i.e. the
first term on the right-hand side of (6.27)).

The scalings of the diffusion and viscous Stokes layers for the non-equilibrium
critical-layer analyses in table 1 are given in parentheses because they correspond
to higher-order terms in these problems. The scalings that would produce order-one
pressure gradient and viscous effects are enclosed in square brackets. However, the
actual values of these quantities considered in the indicated analyses are negligibly
small. The linear growth rates of the instability waves become negligibly small when
µ̄� 1 and r < 3, as will be shown in §6.

The scaling of the non-equilibrium critical-layer stage in Wu et al. (1997) is the
same as in Goldstein (1994). However, the plane wave amplitude is negligibly small in
the former. Both analyses consider the later stages of the evolution of the Tollmien–
Schlichting waves in a Blasius boundary layer. Goldstein’s (1994) analysis starts with
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a linear resonant triad as in Mankbadi et al. (1993) but with sufficiently small initial
amplitude of the oblique modes. The initial stage of Wu et al. (1997) only involves a
pair of linear oblique modes, which coincides with the case where the initial plane wave
amplitude is negligibly small in the Mankbadi et al. (1993) analysis. The instability
waves in Wu et al. (1997) therefore follow a different route to the non-equilibrium
stage than the one in Goldstein (1994). However, the oblique-mode amplitudes are
ultimately governed by the same non-equilibrium scaling and amplitude equations in
both cases.

Although it is possible to carry out the analysis for arbitrary m, for simplicity we
will only give results for the non-equilibrium analysis where m = r. We will also
assume that 1 6 r 6 3 since table 1 indicates that this range of r covers most of
the important types of boundary-layer flows. The analysis can easily be modified to
include other values of r. The scalings in (3.5)–(3.9) now become

λ = 1/(σ3r+4R∆), (3.12)

ε2d = σ4r+1, δ3d = δ02 = σ3r+1, (3.13)

and

η̄ =
y − yc
σr+1

. (3.14)

Equations (3.12)–(3.14) along with (3.2)–(3.4) are the non-equilibrium version of the
generalized scaling and these will be used in the following sections. We do not need to
include the diffusion and viscous Stokes layers for this type of analysis. The thickness
of the former becomes the same as that of the critical layer and the latter does not
make a leading-order contribution to the growth rate.

4. Main boundary layer
In this and the following sections we derive dispersion relations connecting the

phase speed and the wavenumbers of the instability waves. Since the analysis is now
quite well documented we include only enough steps to guide the reader. We have
attempted to use the same notation as G&L (except their U ′0 being replaced by τ0)
and do not repeat some of the equations that are given in G&L.

The unsteady flow outside the critical layer is governed by linear dynamics to the
required order of approximation, which means that the velocity field can be written
as

u = U(y, x3)+ε2dReA0Φ0ye
iX +δ3dRe2AŨ(y, x1)e

iX/2 cosZ+δ02ReŨ02(y, x1)e
2iZ + . . . ,

(4.1)

v = −ε2dReiαA0(x1)Φ0(y, x1)e
iX − δ3dRe2iγA(x1)Φ(y, x1)e

iX/2 cosZ + . . . , (4.2)

and

w = δ3dRe2iAW̃ (y, x1)e
iX/2 sinZ + . . . , (4.3)

with

X ≡ σᾱ(x− σc̄t) and Z ≡ σβ̄z, (4.4)

where Re denotes the real part, x1 and x3 are defined in (3.4) and (2.1), and ε2d, δ3d

and δ02 are given in (3.13). The scaled coordinates X and Z are real to the required
level of approximation, but we allow the modal amplitudes A0 and A to be complex.
The mean flow correction term in (4.1) is induced by nonlinear effects in the critical
layer.
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As in G&L, Mankbadi et al. (1993) and Wu (1993), the mean flow U(y, x3) can be
written as, when r > 1,

U = UB + σr−1Ūp for y = O(1), (4.5)

where UB is the Blasius velocity and σr−1Ūp is a small correction due to a pressure
gradient. As y approaches the wall, which is assumed to be located at y = 0,

UB → τ0y −
τ2

0

2× 4!
y4 +

11τ3
0

4× 7!
y7 + . . . , Ūp → µ̄

(
−τ̄y + 1

2
y2 + . . .

)
, (4.6)

where the constant τ0(' 0.332) denotes the scaled Blasius skin friction and µ̄ is defined
in (3.3). The total wall-shear stress τw can be written as (Wundrow et al. 1994)

τw = τ0 − σr−1µ̄τ̄. (4.7)

The second term in (4.7) becomes O(1) when r = 1, and (4.5) and (4.6) can then be
rewritten as U → τwy + (µ̄/2)y2 + . . . as y → 0, as in Wu (1993).

The mode shapes Φ0 and Φ satisfy Rayleigh’s equations to the required levels of
approximation

(U − ĉ)(D2 − γ̂2)Φ̂−U ′′Φ̂ = 0, (4.8)

and the ‘complex’ wavenumbers α and γ and phase speeds c0 and c are given to the
required order of approximation, by

γ̂ = σ

[
ˆ̄γ + σr

ᾱÂ′

ik ˆ̄γÂ

]
, (4.9)

ĉ =
σc̄

1 + σrkÂ′/(iᾱÂ)
, (4.10)

where the prime denotes differentiation with respect to the relevant argument, D ≡
∂/∂y, and {Â, Φ̂, ĉ, γ̂, ˆ̄γ, k} can denote either {A0, Φ0, c0, α, ᾱ, 1} for the two-dimensional
wave or {A,Φ, c, γ, γ̄, 2} for the oblique modes.

The scaled velocity components Ũ and W̃ can be expressed in terms of Φ and DΦ
as shown in G&L, and γ̄ and the propagation angle of the oblique modes ±θ are
defined as

γ̄ ≡
[
(ᾱ/2)2 + β̄2

]1/2
and θ ≡ sin−1(β̄/γ̄). (4.11)

The scaled Strouhal number, s̄, which is a real constant, of the two-dimensional
fundamental mode is given by

s̄ = ᾱc̄. (4.12)

Finally, Φ0 and Φ must satisfy the boundary condition

Φ̂ = 0 at y = 0, (4.13)

for tangential flow near the wall.
Since we need only know the logarithmic derivative of Φ̂ the most convenient solu-

tion turns out to be the one given by Miles (1962), which is obtained by transforming
(4.8) into a Riccati equation. It can be written as

DΦ̂

Φ̂
=

U ′

U − ĉ −
1

(U − ĉ)2Ω∗
, (4.14)

where

Ω∗ = 1/[γ̂(1− ĉ)2] + Ω0 + γ̂Ω1 + γ̂2Ω2 + . . . , (4.15)

and Ω0, Ω1 and Ω2 are the same as equations (3.4)–(3.6) of G&L.
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Matching is simplified by using the classical ‘inviscid function’ (Lin 1955)

Ŵ ≡ ĉDΦ̂

U ′Φ̂− (U − ĉ)DΦ̂
. (4.16)

As in G&L, substituting the Miles’ (1962) solution (4.14) and (4.15) along with (4.9)
and (4.10) into (4.16), expanding for small σ, and finally using (4.5) to (4.7), we obtain

Ŵ =
c̄U ′

ˆ̄γ(1− σc̄)2
− σc̄τw

(1− σc̄)4

(
J1 + σ2c̄J2 + σ2c̄2J3 +

y2

8τw

)
+σ2 ˆ̄γc̄τw

(
2J4 + σc̄J5 −

c̄y

4ˆ̄γτ2
w

)
− σ3 7c̄3

48τ2
w

+ σr
c̄

τ2
w

(
3µ̄

2
+ µ̄c ln y

)
+σr

ic̄τw

ˆ̄γ
2

(
ᾱ

k ˆ̄γ
+
k ˆ̄γ

ᾱ

)
Â′

Â
+ . . . , (4.17)

where

µ̄c ≡ µ̄− σ3−r(τ0Yc/2)2, (4.18)

the constants J1 to J5 are given in Appendix A and we have used the fact that

c̄ = τwYc + . . . . (4.19)

5. The Tollmien region (inviscid wall layer)
The analyses of Graebel (1966) and Nield (1972) suggest that the scaled transverse

coordinate

Y ≡ y/σ (5.1)

must be introduced directly into (4.8) before attempting to obtain the solution. The
solution that satisfies the boundary condition (4.13) is of the form

Φ̂ = σ(τw + σâ†)Y + σr+1F(Y , φ̂) + . . . , (5.2)

where â†, which can denote either a†0 or a† for two-dimensional or oblique modes
respectively, is an order-one constant, and F , which can be discontinuous across Yc,
is given by

F±(Y , φ̂) = f(Y ) + iµ̄cYc[(Y − Yc)φ̂± + Ycφ̂
−], Y >

<Yc, (5.3)

where

f(Y ) = µ̄c
{

1
2
Y 2 + Yc[(Y − Yc) ln |Y − Yc|+ Yc lnYc]

}
−σ3−rτ2

0Y
3(Yc+

1
2
Y )/4!, (5.4)

and the integration constant φ̂± is, in general, a complex function of x1.
Inserting (4.5)–(4.7) and (5.1)–(5.3) into (4.16) and re-expanding, we obtain

Ŵ =
U ′

τw
+ σr

µ̄cYc

τw

(
ln
Y − Yc
Yc

− i∆φ̂

)
− σ3 τwYc

8
Y (2Yc + Y ) + . . . , (5.5)

for Y > Yc, where ∆φ̂ denotes either φ−0 −φ+
0 or φ− −φ+ for the two-dimensional or

oblique modes, respectively.
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Matching (5.5) with (4.17) shows that

1 =
c̄τw

γ̄(1− σc̄)2
− σc̄τw

(1− σc̄)4

(
J1 + σ2c̄J2 + σ2c̄2J3

)
+ σ2γ̄c̄τw (2J4 + σc̄J5)

−σ3 7c̄3

48τ2
w

+ σr
3c̄µ̄

2τ2
w

+ σr(ln σ + lnYc)
µ̄cc̄

τ2
w

+ . . . , (5.6)

(
cos θ +

1

cos θ

)
A′

A
= − µ̄cγ̄

2Yc

c̄τ2
w

∆φ, (5.7)

and

A′0
A0

= − µ̄cᾱ
2Yc

2c̄τ2
w

∆φ0 + iκi, (5.8)

where we have put

γ̄ = ᾱ+ σr2κi. (5.9)

The scaled initial wavenumber detuning κi can be given arbitrarily as an initial
condition. It follows from (4.11) and (5.9) that

β̄ = (
√

3/2)ᾱ+ σr(4/
√

3)κi + . . . . (5.10)

Equation (5.6) is the dispersion relation which, along with (5.9), determines γ̄ and
ᾱ in terms of c̄ or in terms of the scaled Strouhal number s̄ which is defined in (4.12).
Since its coefficients are all real, it is consistent with our original assertion that ᾱ and
c̄ are real quantities. It also shows that γ̄ possesses a power-series expansion of the
form

γ̄ = γ̄0 + σγ̄1 + σ2γ̄2 + σ3(ln σ)γ̄3l + σ3γ̄3 + . . .+ σr(ln σ)γ̄rl + σrγ̄r + . . . , (5.11)

with similar expansions for ᾱ, β̄ and c̄. Equation (5.6) shows that c̄0 and γ̄0 satisfy the
usual long-wavelength small-growth-rate dispersion relation

c̄0 = γ̄0/τw. (5.12)

Equations (5.7) and (5.8) relate the growth rates of the instability waves A′/A and
A′0/A0 to the phase jumps ∆φ and ∆φ0 across the critical layer. To determine these
latter quantities, it is necessary to consider the flow within the critical layer itself.

Equations (4.1)–(4.3), (4.7), (4.11) and (5.2)–(5.4) show that, as in G&L,

u = στwY + σr+1 µ̄

2
Y 2 − σ4 τ2

0

2× 4!
Y 4 + ε2dRe

[
τw + σa

†
0 + σr

(
f
Y

+ iµ̄cYcφ
±
0

)]
A0e

iX

+δ3d2 sec θRe

{
(τw + σa†)(1 + ζ sin2 θ) + σr

τwζ

c̄
sin2 θ

[
f +

µ̄

2
Y 2(1− ζ)

− τ2
0Y

4

2× 4!
(3− ζ) +

c̄f
Y

τwζ tan2 θ
− c̄A′

iγ̄A

(
cos θ +

τ2
wY

2ζ

c̄2 cos θ

)
+

ic̄µ̄cYc
τw

(
φ− +

φ±

ζ sin2 θ

)]}
AeiX/2 cosZ + δ02ReŪ02(Yc±, x1)e

2iZ + . . . , (5.13)

v = −σ2τwYRe
[
ε2diᾱA0e

iX + δ3d2iγ̄AeiX/2 cosZ
]

+ . . . , (5.14)

w = −δ3d2 sin θReiτwζAeiX/2 sinZ + . . . , (5.15)

p = P + σc̄τwRe
[
ε2dA0e

iX + δ3d2 cos θAeiX/2 cosZ
]

+ . . . , (5.16)
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where Ū02 is the wall-layer expansion corresponding to Ũ02 in (4.1), P denotes the
mean pressure at the critical level, and we have put

ζ ≡ c̄/(τwY − c̄). (5.17)

Since these solutions become singular at the critical level Y = Yc, they have to be
rescaled in this region.

6. The critical level
As in Goldstein et al. (1987), G&L, and others, the thickness of the small-growth-

rate non-equilibrium critical layer must be of the same order as the growth rate, i.e.
O(σr+1) in the present case, in order to make the growth rate and the linear convection
terms of the same order of magnitude there. The appropriate transverse coordinate
in this region, which was given in (3.14) can be rewritten as

η̄ = (Y − Yc)/σr = (y − yc)/σr+1. (6.1)

The viscous parameter λ is defined in (3.12). The measures of the instability wave
amplitudes ε2d and δ3d and the magnitude of the mean flow correction term δ02 are
given in (3.13).

The governing equations expressed in terms of the scaled variables x1, X, Z and η̄
are

D̄{u, v̄, w} = −
{
ᾱp

X
+ σrp

x1
, σ−2r−4p

η̄
, β̄p

Z

}
, (6.2)

ᾱu
X

+ v̄η̄ + β̄w
Z

+ σrux1
= 0, (6.3)

where we have put

D̄ ≡ ᾱ(u− σc̄) ∂
∂X

+ v̄
∂

∂η̄
+ β̄w

∂

∂Z
+ σru

∂

∂x1

− σr+1λ
∂2

∂η̄2
, (6.4)

and

v = σr+2v̄. (6.5)

Introducing (3.13) and (6.1) into (5.13)–(5.16) and re-expanding the result for small
η̄ shows that the critical-layer solution should be of the form

u− σc̄ = σr+1τwη̄ + σ2r+1u(1) + σ3r+1u(2) + σ4r+1u(3) + σ5r+1u(4) + . . . , (6.6)

v̄ = −σ2r+12γ̄τwYcReiAeiX/2 cosZ + σ3r+1v̄(2) + σ4r+1v̄(3) + σ5r+1v̄(4) + . . . , (6.7)

w = σ2r+1w(1) + σ3r+1w(2) + σ4r+1w(3) + σ5r+1w(4) + . . . , (6.8)

p = P + σ3r+2(2c̄τw cos θ)ReAeiX/2 cosZ + σ4r+2p(2) + σ5r+2p(3) + . . . . (6.9)

Substituting the expansions (6.6)–(6.9) into (6.2)–(6.5) with (4.7) we can obtain the
governing equations for u(l), v̄(l), w(l) and p(l) which are the same as equations (5.14)–
(5.21) and Appendix A of G&L with their U ′0 replaced by τw .

We must now solve these equations subject to the transverse boundary condition
that they match onto the outer solution (5.13)–(5.16); this is the same as the boundary
value problem in G&L. The following normalized variables are introduced:

x̃ = 1
2
τwᾱx1 − x0, η = η̄/c̄, λ̄ = 2λ/(τwᾱc̄

3), (6.10)

where x0 is a coordinate origin shift, to be chosen subsequently.
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The relevant solutions are given by{
u(1) − c̄µ̄†cYcη, w(1)

}
= 2Re {i tan θ cosZ, sinZ}Q(1)(η, x̃)eiX/2, (6.11)

for the lowest-order and by{
u(l)
η − Q

(l)
M, v̄

(l), w(l)
}

= Re
∑
n,m

{
Q(l)
n,m(η, x̃), V (l)

n,m(η, x̃),W (l)
n,m(η, x̃)

}
ei(nX/2+mZ), (6.12)

for l = 2, 3 and 4, where

µ̄†c ≡ µ̄− σ3−r 1
3
( 1

2
τ0Yc)

2, (6.13)

Q
(2)
M = (µ̄− σ3−r 1

4
c̄2)c̄2η + . . . , Q

(3)
M = −σ6−2r 1

4
c̄3τ2

wYcη
2 + . . . , (6.14)

and the governing equations and boundary conditions for Q(1), Q(l)
n,m, V (l)

n,m, and W (l)
n,m are

the same as equations (5.27)–(5.29), (5.35)–(5.40) and Appendix B of G&L. Matching
with the outer solution (5.14) shows that

V
(2)
2,0 → −iτwYcᾱA0 as η → ±∞. (6.15)

Before attempting to solve these equations, it is convenient to introduce the follow-
ing normalized variables:

x̄ = κ̂x̃, η̃ = η/κ̂, λ̃ = λ̄/κ̂3, X̃ = X −X0, (6.16)

Ã = (YcM)1/2/(c̄κ̂3)AeiX0/2, Ã0 = (M/κ̂4)A0e
iX0 , (6.17)

where

M = 8πYcβ̄
2/(τ3

wᾱc̄
3), (6.18)

κ̂ is a normalization parameter which can be chosen arbitrarily and X0 is the
coordinate origin shift to be chosen subsequently. The equations, which we refer to
as the critical-layer equations, now become

L1Q̃
(1) = Ã, (6.19)

L1q̃
(3L)
1,1 = 2i(κ0/κ̂)Ã, (6.20)

L2Q̃
(4L)
2,0 = 4i(κ0/κ̂)Ã0, (6.21)

Ln

{
Q̃(l)
n,m, W̃

(l)
n,m, q̃

(3)
n,1

}
=
{
G(l)
n,m, H

(l)
n,m, R

(3)
n,1

}
, (6.22)

Ũ
(l)

n,mη̃ = Q̃(l)
n,m, (6.23)

Ṽ
(2)

0,2η̃ = 2W̃ (2)
0,2 , Ṽ

(2)

2,0η̃ = 2Ũ(2)
2,0 , Ṽ

(3)

1,1η̃η̃ = q̃
(3)
1,1, Ṽ

(3)

3,1η̃η̃ = 3q̃(3)
3,1, (6.24)

for l = 2, 3 and 4, where we have put

Ln ≡ ∂/∂x̄+ inη̃ − λ̃∂2/∂η̃2, (6.25)

q̃
(3)
1,1 + q̃

(3L)
1,1 ≡ Q̃

(3)
1,1 + W̃

(3)

1,1η̃ − iQ̃(2)
1,1x̄, q̃

(3)
3,1 ≡ Q̃

(3)
3,1 + 1

3
W̃

(3)

3,1η̃ , (6.26)

and

κ0 ≡ π(µ̄− σ3−r 1
4
c̄2)Ycᾱ/(τ

3
wc̄) (6.27)

is the linear growth rate of the two-dimensional wave. The normalized variables
Q̃(1), Q̃(l)

n,m, Q̃(4L)
2,0 , and W̃ (l)

n,m of Q(l), Q(l)
n,m, Q(4L)

2,0 , and W (l)
n,m respectively, are defined in

Appendix B along with G(l)
n,m, H (l)

n,m, and R
(3)
n,1. The Ṽ

(2)
2,0 in (6.24) is the normalized
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variable corresponding to V
(2)
2,0 + iτwYcᾱA0 (see (6.15)). Equations (6.19)–(6.22) must

be solved subject to the transverse boundary conditions

Q̃(1), q̃
(3L)
1,1 , Q̃

(4L)
2,0 , Q̃

(l)
n,m, W̃

(l)
n,m, q̃

(3)
n,1 → 0 as η̃ → ±∞, (6.28)

for l = 2, 3 and 4.
The critical-layer equations (6.20) and (6.21) for the linear problem can be solved

by taking Fourier transforms with respect to η̃ and integrating the results with respect
to x̄. The solutions are

q̃
(3L)
1,1 = 2i

κ0

κ̂
e−iη̃x̄

∫ x̄

−∞
eiη̃x̃−λ̃(x̄−x̃)3/3Ã(x̃)dx̃, (6.29)

Q̃
(4L)
2,0 = 4i

κ0

κ̂
e−2iη̃x̄

∫ x̄

−∞
e2iη̃x̃−4λ̃(x̄−x̃)3/3Ã0(x̃)dx̃. (6.30)

The linear velocity jumps across the critical layer are obtained by integrating (6.29)
and (6.30) with respect to η̃, ∫ ∞

−∞
q̃

(3L)
1,1 dη̃ = 2πi

κ0

κ̂
Ã(x̄), (6.31)

∫ ∞
−∞
Q̃

(4L)
2,0 dη̃ = 2πi

κ0

κ̂
Ã0(x̄). (6.32)

The solutions of the critical-layer equations have to match onto the discontinuous
O(δ3dσ

r) = O(σ4r+1) and O(ε2dσ
r) = O(σ5r+1) terms (see (3.13)) in (5.13) for the oblique

and two-dimensional modes respectively. It therefore follows from (5.7), (5.8), (6.6),
(6.12) and (6.26) along with (6.31) and (6.32) that these solutions must satisfy(

cos θ +
1

cos θ

)(
dÃ

dx̄
− κob

κ̂
Ã

)
= − i

4π cos2 θ

∫ ∞
−∞
q̃

(3)
1,1dη̃, (6.33)

dÃ0

dx̄
−
(κ0

κ̂
+ iκ̄i

)
Ã0 = − i

2π

∫ ∞
−∞
Q̃

(4)
2,0dη̃, (6.34)

where the linear growth rate of the oblique mode κob and the effective wavenumber
detuning κ̄i (which corresponds to κ̃i of G&L in their final amplitude equation (5.51))
are defined as

κob = κ0/[2 cos θ(1 + cos2 θ)], (6.35)

κ̄i =
2κi
κ̂τwᾱ

. (6.36)

These equations ultimately determine the unknown instability wave amplitudes Ã and
Ã0. They arise from the requirement that the change in the subharmonic and funda-
mental components of the velocity fluctuation across the critical layer as calculated
from the external solutions are the same as when they are calculated from the internal
solutions.

The system of equations (6.19) and (6.22)–(6.24) along with the jump conditions
(6.33) and (6.34) are the final equations to be solved subject to the transverse boundary
conditions (6.28) and upstream boundary condition. The variables are normalized in
such a way that the nonlinear equations (6.19) and (6.22)–(6.24) do not include the
basic mean-flow-dependent parameters, τw , µ̄, c̄, ᾱ, γ̄, λ̃, etc., explicitly and only the
linear growth rates are mean flow dependent. It is easy to show that λ̃ in (6.25)
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becomes unity when κ̂ is equal to λ̄1/3 from (6.16). We kept the obliqueness angle θ
arbitrary in deriving these equations so that they would apply for any obliqueness
angle when only a pair of oblique modes enters the interaction. The linear growth rates
κ0 and κob in (6.27) and (6.35) become negligibly small when µ̄� 1 and 1 6 r < 3.

As mentioned earlier, the upstream flow can start as a resonant triad of linear
instability waves as in G&L or as a resonant triad of linear and nonlinear instability
waves as in Wundrow et al. (1994) and Goldstein (1994). The upstream boundary
condition for the former case becomes

Ã→ a(0)e(κob/κ̂)x̄, Ã0 → e(κ0/κ̂+iκ̄i)x̄ as x̄→ −∞, (6.37)

where

a(0) =
Y

1/2
c

κ̂c̄

A(0)

(A(0)
0 )1/2

(
κ̂4

M|A(0)
0 |

)[κob−(κ0+iκ̄iκ̂)/2]/κ0

(6.38)

and A(0) and A
(0)
0 are the complex scaled initial amplitudes of the instability waves,

i.e.

A→ A(0)eκobτwᾱx1/2, A0 → A
(0)
0 e(κ0+iκ̄iκ̂)τwᾱx1/2 as x1 → −∞. (6.39)

The origin shifts x0 and X0 in (6.10) and (6.16) are chosen to satisfy

(M/κ̂4)A(0)
0 eiX0+(κ0+iκ̄iκ̂)x0 = 1. (6.40)

The upstream conditions for the resonant triad of linear/nonlinear waves can be given
as solutions of the preceding linear or nonlinear stages as was shown in Wundrow
et al. (1994) and Goldstein (1994). The upstream condition for the non-equilibrium
critical-layer stage of a Blasius boundary layer is given by (9.3) below.

Finally, (4.11), (5.6), (5.9), (5.10) and (6.35) show that

ᾱ = γ̄, cos θ = 1
2
, c̄ = ᾱ/τw = τwYc, κob = 4

5
κ0, (6.41)

to the order of approximation of the analysis.

7. Numerical method
The critical-layer equations (6.19) and (6.22)–(6.24) together with the jump con-

ditions (6.33) and (6.34) (along with the relation (6.41)) subject to the transverse
boundary conditions (6.28) and upstream condition can be solved both numerically
and analytically. The numerical method will be presented in this section and the
analytical solution will be summarized in the following section.

The system of partial differential equations (6.19) and (6.22) is solved by using
the Crank–Nicolson method with the Thomas algorithm (see Anderson, Tannehill &
Pletcher 1984). Newton and Cotes’ integration formula of high (up to eighth) order
(see Kopal 1961, pp. 575–577) is used to compute the integrals of (6.23) and (6.24).
Equations (6.33) and (6.34) are solved by using a predictor-corrector method where
a fifth-order Adams–Bashforth method was used for the predictor step and variable
(up to twelfth)-order Adams–Moulton method was used for the corrector step (see
Gear 1971, pp. 110–113).

We use a uniform step size (of typical value of ∆x̄ = 0.002) for the streamwise
marching. However, a transformation is used for the transverse coordinate η̃ in order
to have a refined mesh near η̃ = 0. A suitable transformation which maps the original
non-uniform grid ∆η̃, with −H 6 η̃ 6 H , into the computational uniform grid ∆ỹ,
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where −1 6 ỹ 6 1, is given by (see Anderson et al. 1984, pp. 250–251)

ỹ = (1/τ̂) sinh−1[(η̃ sinh τ̂)/H], (7.1)

where τ̂ is the stretching parameter which varies from zero (no stretching) to large
values (refinement near η̃ = 0). It is easy to obtain the metrics dỹ/dη̃ and d2ỹ/dη̃2

from (7.1) and incorporate them into the Crank–Nicolson scheme. The values of the
parameters that we used were τ̂ = 6, H = 200 (for λ̃ = 1) or H = 4800 (for λ̃ = 104)
and ∆ỹ = 10−3.

Equation (6.19) implies that the asymptotic behaviour of Q̃(1) as η̃ → ±∞ is

Q̃(1) → −iÃ/η̃ + Ãx̄/η̃
2 + . . . . (7.2)

Similarly the asymptotic behaviour of Q̃(l)
n,m, W̃

(l)
n,m, and q̃(3)

n,1 as η̃ → ±∞ can be obtained
from (6.22). These asymptotic solutions are used to give boundary values at η̃ = ±H
for (6.19) and (6.22) instead of the original transverse boundary conditions (6.28).

8. Amplitude equations and their viscous limit
The critical-layer equations (6.19), (6.22)–(6.24), (6.33) and (6.34) subject to (6.28) are

solved analytically in Appendix C of G&L for the inviscid case with the parameters
given by (6.41). The results show that the amplitudes Ã and Ã0 satisfy integro-
differential equations. It is possible to modify the G&L analysis to include the
viscosity as was done for special cases by Goldstein & Lee (1993), Wu et al. (1993)
and Leib & Lee (1995), and in the general case by Wu (1995). To this end (6.19) can
be solved to obtain

Q̃(1) = e−iη̃x̄

∫ x̄

−∞
eiη̃x̃−λ̃(x̄−x̃)3/3Ã(x̃)dx̃. (8.1)

By substituting (8.1) along with other lower-order solutions into the right-hand side
of (6.22) and taking Fourier transform with respect to η̃, we can successively solve
Q̃(l)
n,m, W̃ (l)

n,m, and q̃(3)
n,1. We refer the reader to Wu (1995) for the detailed derivations. Here

we merely note that substitution of the solutions into the jump conditions (6.33) and
(6.34) shows that the amplitudes Ã and Ã0 satisfy the following integro-differential
equations:(

cos θ +
1

cos θ

)(
dÃ

dx̄
− κob

κ̂
Ã

)
= i

∫ x̄

−∞
K1(x̄|x1)Ã0(x1)Ã

∗
(2x1 − x̄)dx1

+
i

4 cos2 θ

∫ x̄

−∞

∫ x1

−∞
K2(x̄|x1, x2)Ã(x1)Ã(x2)Ã

∗
(x1 + x2 − x̄)dx2dx1, (8.2)

dÃ0

dx̄
−
(κ0

κ̂
+ iκ̄i

)
Ã0 = i

∫ x̄

−∞

∫ x1

−∞

[
K3(x̄|x1, x2)Ã0(x1)Ã(x2)Ã

∗
(2x1 + x2 − 2x̄)

+K4(x̄|x1, x2)Ã(x1)Ã0(x2)Ã
∗
(x1 + 2x2 − 2x̄)

]
dx2dx1

+i

∫ x̄

−∞

∫ x1

−∞

∫ x2

−∞
K5(x̄|x1, x2, x3)Ã(x1)Ã(x2)Ã(x3)Ã

∗
(x1 + x2 + x3 − 2x̄)dx3dx2dx1,

(8.3)

where the asterisks denote complex conjugates and we have used (4.19). These are
generalized versions of the integro-differential equations given in G&L and Wu (1995).
The scaling factor σ3−r is now included in the linear growth rates κ0 and κob, as given
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in (4.18), (6.27) and (6.35), and the viscous effect now appears in the kernel functions.
We have also retained the obliqueness angle θ as a parameter. These equations
determine the amplitudes of long-wavelength small-growth-rate instability waves in
boundary layers whose critical layers are governed by non-equilibrium dynamics.

The kernel function K1 of the parametric-resonance term is defined as (Goldstein
& Lee 1993)

K1 = e−2λ̃(x̄−x1)3/3(x̄− x1)
2, (8.4)

and K2 for the self-interaction term, which was first derived by Wu et al. (1993), is
given in Appendix C. It is easy to show that these viscous kernel functions K1 and K2

reduce to the corresponding inviscid kernel functions given in G&L in the limit λ̃→ 0.
The formula for K5 of the back-reaction term in the plane-wave amplitude equation
is very complex and is given by Wu (1995) together with K3 and K4 for the mutual-
interaction term. Rather than integrating the amplitude equations (8.2) and (8.3), we
choose to directly solve the non-homogeneous partial differential equations with jump
conditions by using the numerical method described in the previous section. However,
it is easier to solve the amplitude equations when the mutual-interaction and back-
reaction terms in the plane-wave amplitude equation are missing or unimportant, i.e.
for the two oblique-mode interactions considered by Goldstein & Choi (1989), Wu et
al. (1993) and Leib & Lee (1995).

As mentioned earlier, the normalization parameter κ̂ in (6.16) can be chosen
arbitrarily. The viscosity parameter can be eliminated from the kernel functions by
choosing κ̂ = λ̄1/3. This is very convenient for computation because evaluating the
viscous kernel functions requires a considerable amount of computational time.

The numerical computations with finite viscosity, as given in §10, show that the
solutions always develop a singularity at some finite value of x̄, say x̄s, as was also
observed in the inviscid limit by G&L. Then as x̄ → x̄s, Ãx̄ and Ã0x̄ become large
compared with Ã and Ã0 and are balanced by the integral terms on the right-hand
sides of (8.2) and (8.3). As in G&L and Wu et al. (1993) the asymptotic form of the
solution when x̄→ x̄s is given by

Ã = b/(x̄s − x̄)3+iψ, Ã0 = b0/(x̄s − x̄)4+2iψ, (8.5)

where x̄s and ψ are real constants, b and b0 are complex constants, and ψ, |b|, |b0|
and the argument of b2/b0 can be determined from equations (6.7) and (6.8) of G&L.

The viscous limits of (8.2) and (8.3), which can be obtained by using the method
described in Wu et al. (1993), are(

cos θ +
1

cos θ

)(
dÃ

dx̄
− κob

κ̂
Ã

)
=

i

2λ̃
Ã0(x̄)Ã

∗
(x̄)

− i

2λ̃
4/3

(
1

18

)1/3

(tan2 θ cos 2θ)Γ
(

1
3

)
Ã(x̄)

∫ x̄

−∞
|Ã(x1)|2dx1, (8.6)

dÃ0

dx̄
−
(κ0

κ̂
+ iκ̄i

)
Ã0 = 0. (8.7)

The derivation of (8.7) assumes that the viscous limits of the mutual-interaction and
back-reaction terms in (8.3) are of higher-order in the viscous parameter λ̃. This can
be proved from the full viscous amplitude equations given in Wu (1995). We must
also add viscous correction terms, which are of higher-order terms in the present
non-equilibrium analysis, to the linear growth rates κ0 and κob in (6.27) and (6.35) in
order to make this solution valid for large values of λ̃ (G&L; Mankbadi et al. 1993;
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Wu 1993). Mankbadi et al. (1993) and Wu (1993) derived these amplitude equations
directly from the Navier–Stokes equations.

Equations (8.6) and (8.7) are invariant under the transform

λ̃→ λ̃v/σ
r, Ã0 → Ã0v/σ

r, Ã→ Ãv/σ
2r/3. (8.8)

The scaling of this viscous-limit problem can be obtained by putting (see (4.1) and
(6.17))

σrλ→ λv
[
= 1/(σ2r+4R∆)

]
, ε2d/σ

r → ε2dv

[
= σ3r+1

]
, δ3d/σ

2r/3 → δ3dv

[
= σ7r/3+1

]
,

(8.9)
where λ, ε2d and δ3d are defined in (3.12) and (3.13), and λv = τwᾱc̄

3κ̂3λ̃v/2 from (6.10)
and (6.16).

The scalings in (8.9) can also be obtained directly from the generalized scaling
(3.5)–(3.7) by taking m = 0. It is easy to show that the amplitude equations (8.6)
and (8.7), with {λ̃, Ã, Ã0} replaced by {λ̃v, Ãv, Ã0v} and with the modified linear growth
rates, and the scalings in (8.9) along with (3.2) to (3.4) are indeed the same as those
obtained by Mankbadi et al. (1993) for the Blasius boundary layer if we put r = 3
and µ̄ = 0 and those obtained by Wu (1993) for the favourable-pressure-gradient
boundary layer when we take r = 1.

The scaling, which we discussed in §3, for a viscous (quasi-equilibrium) resonant-
triad interaction in a boundary layer with small non-zero pressure gradient (i.e. larger
viscous effect than in G&L or smaller pressure gradient than in Wu 1993) can also
be recovered by putting r = 3 with order-one µ̄. The amplitudes are governed by (8.6)
and (8.7) if their linear growth rates are modified to include the viscous Stokes-layer
effects.

9. Blasius boundary layer
Goldstein (1994, 1995) studied the non-equilibrium critical-layer effects in a Blasius

boundary layer. He showed that, when the initial amplitude of the oblique mode is
exponentially small, the initial parametric resonance growth of quasi-equilibrium type
is followed by the non-equilibrium-type interaction before the self-interaction becomes
important. We will summarize the analysis which was first given by Goldstein (1994)
in this section and give some relevant numerical results in the following section.

It is well known that the Reynolds number R∆ scales like (wavenumber)−10 (or σ−10)
in the upper-branch regime of a Blasius boundary layer (e.g. Reid 1965; Goldstein &
Durbin 1986). The scaled viscous parameter λ defined in (3.12) will then be O(1) in
this region if we take

r = 2, (9.1)

which implies from (3.4) and (3.13) that

x1 = σ3x, ε2d = σ9, δ3d = δ02 = σ7. (9.2)

The scalings in (9.1) and (9.2) along with (3.2), (3.12) and (3.14), also in table 1, can
be used for the non-equilibrium analysis of the later fully coupled stage in a Blasius
boundary layer. From the generalized non-equilibrium analysis described in §§4–8,
we can readily obtain the system of critical-layer equations (6.19), (6.22)–(6.24), (6.33)
and (6.34) or the amplitude equations (8.2) and (8.3), with the parameter r is now
given by (9.1).

Since µ̄ is zero for a Blasius boundary layer, µ̄c, κ0 and κob in (4.18), (6.27) and
(6.35) become O(σ). We, of course, must add the effects of the viscous Stokes layer to
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(6.27) and (6.35), as was given in Mankbadi et al. (1993), in order to be correct up to
O(σ). The linear growth rate terms are negligible in the jump conditions (6.33) and
(6.34) and in the amplitude equations (8.2) and (8.3) when Ã and Ã0 evolve on the
fast length scale x̄ (i.e. x1). For simplicity we consider only the perfectly tuned case
where κ̄i = 0. The resulting solutions will not match directly onto the linear Tollmien–
Schlichting wave solutions as x̄→ −∞ when the linear growth terms are neglected in
(8.2) and (8.3). However, as shown in Wundrow et al. (1994) and Goldstein (1994), the
amplitude equations (8.2) and (8.3) (or the system of critical-layer equations), with
the linear growth rate terms omitted and with κ̄i = 0, can be solved subject to the
upstream boundary conditions (instead of (6.37))

Ã0 → a0, Ã→ eiπ/4ebx̄ as x̄→ −∞, (9.3)

where a0 is a real constant and b is determined from an implicit relationship

b = 2
5
a0

∫ ∞
0

e−2λ̃ξ3/3−2bξξ2dξ. (9.4)

The above equation can be solved numerically by using an iteration method for a
given a0. The amplitudes Ã0 and Ã are related to A0 and A in (4.1) by (6.17) and x̄ is
related to x1 in (9.2) by (6.10) and (6.16).

The self-interaction, mutual-interaction and back-reaction terms drop out of (8.2)
and (8.3) when Ã� 1. Therefore,

dÃ

dx̄
= σκ̄obÃ+ 2

5
i

∫ x̄

−∞
K1Ã0(x̃)Ã

∗
(2x̃− x̄)dx̃, (9.5)

dÃ0

dx̄
= σκ̄0Ã0, (9.6)

where K1 is given by (8.4) and we have put

σκ̄ob = κob/κ̂, σκ̄0 = κ0/κ̂. (9.7)

The plane-wave amplitude Ã0 is a slowly varying function of x̄ and is given by

Ã0 = a0e
κ̄0x̂, (9.8)

where

x̂ = σx̄. (9.9)

Goldstein (1994) shows that the relevant solution to (9.5) has the standard WKBJ
form

Ã = eiπ/4â(x̂) exp

(
1

σ

∫ x̂

0

b̂(ξ)dξ

)
. (9.10)

Substituting this into (9.5) and equating to zero the coefficients of the first two powers
of σ, we obtain

b̂(x̂) =
2

5
Ã0(x̂)

∫ ∞
0

e−2λ̃ξ3/3−2b̂(ξ)ξξ2dξ, (9.11)

â(x̂) = C0b̂
(κ̄ob/κ̄0)

(
b̂′/b̂

)1/2

, (9.12)

where the prime denotes differentiation with respect to x̂ and C0 is a real constant.
It now follows that

Ã0 → a0, Ã→ eiπ/4â(0)eb̂(0)x̄ as x̂→ 0, (9.13)
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and therefore that (9.8) and (9.10) match onto the upstream asymptotic behaviour
(9.3) of the full non-equilibrium solutions to (8.2) and (8.3) if we put

â(0) = 1, b̂(0) = b. (9.14)

It also follows from (9.8), (9.11) and (9.12) that

Ã0 → 0, b̂→ Ã0/(5λ̃), â→ C0κ̄
1/2
0

(
a0

5λ̃

)κ̄ob/κ̄0

eκ̄obx̂ as x̂→ −∞, (9.15)

and consequently that

Ã→ C0e
iπ/4κ̄

1/2
0

(
a0

5λ̃

)κ̄ob/κ̄0

exp

[
κ̄obx̂+

a0

σ5κ̄0λ̃
(eκ̄0x̂ − 1)

]
as x̂→ −∞. (9.16)

As shown in Goldstein (1994), this matches onto the downstream behaviour of the
solution to the viscous parametric-resonance equation:

dÃ

dx̂1

= κ̄obÃ+
i

5λ̃
Â0Ã

∗, (9.17)

dÂ0

dx̂1

= κ̄0Â0, (9.18)

where we have put

x̂1 ≡ x̂−
1

κ̄0

ln σ, (9.19)

Â0 ≡
1

σ
Ã0. (9.20)

The solutions to these equations satisfy the upstream boundary conditions

Ã→ a(0)eκ̄obx̂1 , Â0 → a0e
κ̄0x̂1 as x̂1 → −∞, (9.21)

and therefore match onto the linear Tollmien–Schlichting wave solutions. In fact these
are the equations obtained by Mankbadi et al. (1993) for a Blasius boundary layer
by introducing the appropriate slow scale directly into the Navier–Stokes equation
(see also (8.6) and (8.7)). Wundrow et al. (1994) and Goldstein (1994) show that the
solution to (9.17) behaves like

Ã ∼ C̃0e
iπ/4 exp

(
κ̄obx̂1 +

a0

5κ̄0λ̃
eκ̄0x̂1

)
as x̂1 →∞, (9.22)

and will therefore match onto the upstream asymptotic behaviour (9.16) of the
solution to (9.5) if we put

C̃0 = C0κ̄
1/2
0

(
σa0

5λ̃

)κ̄ob/κ̄0

exp

(
− a0

σ5κ̄0λ̃

)
. (9.23)

The approximation (9.17) becomes invalid when κ̄0x̂1 = O(ln σ) because the non-
equilibrium effects become of the same order as the viscous effects and the flow begins
to evolve on the faster scale x1. This shows that the Tollmien–Schlichting waves will
ultimately evolve into the full non-equilibrium solution to (8.2) and (8.3) if the initial
amplitude of the oblique modes is sufficiently (exponentially) small at the start of
parametric resonance. The fully coupled stage is then of the non-equilibrium type
considered by G&L rather than the quasi-equilibrium type of Mankbadi et al. (1993),
even in a Blasius boundary layer.
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10. Discussion and results
We have obtained the generalized scaling (3.2)–(3.11) for the fully coupled resonant-

triad interactions in zero- or non-zero-pressure-gradient boundary layers. Table 1
shows that the scalings of previously studied boundary layers can be recovered by
suitable choice of the parameters r, m, λ and µ̄.

The non-equilibrium critical-layer dynamics, corresponding m = r, are determined
by the system of critical-layer equations (6.19) and (6.22)–(6.24) and the jump condi-
tions (6.33) and (6.34) with the transverse boundary conditions (6.28) and upstream
boundary condition (6.37) or (9.3). The variables have been normalized to eliminate
the basic mean-flow-dependent parameters everywhere except in the linear growth rate
terms, that appear in the jump conditions (6.33) and (6.34). The nonlinear equations
(6.19) and (6.22)–(6.24) do not include any basic-flow-dependent parameters explicitly
as explained in §6. The generalized non-equilibrium critical-layer analysis presented
in §§4–8 is obtained with the scaling (3.2)–(3.4) and (3.12)–(3.14) when 1 6 r 6 3. The
finite–viscosity version of G&L’s adverse-pressure-gradient boundary layer analysis
is obtained by taking r = 3 and the scalings and amplitude equations for the final
fully coupled stage of Wundrow et al. (1994) is recovered by putting r = 3/2 and
µ̄ = λ = 0. It is also shown in the previous section that the final non-equilibrium
stage for the Blasius boundary layer, which was first studied by Goldstein (1994),
corresponds to the case when r = 2 and µ̄ = 0.

The inviscid analysis of G&L can be extended to obtain the amplitude equations
for finite viscosity as was done by Wu et al. (1993) and Wu (1995). The amplitudes of
the instability waves Ã and Ã0 are still governed by the integro-differential equations
(8.2) and (8.3) which are the same as the inviscid ones in G&L, but with viscous
effects now appearing in the kernel functions and the scaling factor σ3−r appearing in
the linear growth rates.

We can recover the scalings and amplitude equations for the Blasius and favourable-
pressure-gradient boundary layers, where the critical layers are of quasi-equilibrium
type and which were studied by Mankbadi et al. (1993) and Wu (1993), by taking
the viscous limit of the non-equilibrium amplitude equations and by rescaling the
non-equilibrium solution by (8.8) and (8.9). It is assumed that the mutual-interaction
and back-reaction terms in the plane-wave amplitude equation become negligibly
small in the viscous limit but this can also be verified from the analytical solution of
Wu (1995).

Since Wu’s (1995) result shows that the final formula for the kernel function K5

in (8.3) is very complex, we decided to solve numerically the critical-layer equations
with jump conditions in the fully coupled case. The amplitude equations are easier to
solve when the mutual-interaction and back-reaction terms can be neglected in the
amplitude equation for the two-dimensional mode.

Results of the numerical computations will be presented in the following subsec-
tions. The system of critical-layer equations is solved by using the numerical method
described in §7. The amplitude equations (8.2) and (8.3) (with the mutual-interaction
and back-reaction terms omitted in (8.3)) are solved by using numerical method
similar to the one used in G&L. The viscous-limit equations (8.6) and (8.7) are solved
with a predictor-corrector method explained in §7.

10.1. Numerical results for the O(1) linear-growth-rate case

We first present the computational results for the case where the linear growth terms
in the jump conditions (6.33) and (6.34) and, consequently, in the amplitude equations
(8.2) and (8.3) are O(1). The upstream boundary condition is given by (6.37). In this
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Figure 2. ln |Ã| and ln |Ã0|, curves (i) and (ii) respectively, vs. x̄ for λ̃ = 103, |a(0)| = 0.01,
arg(a(0)) = 0 and κ̄i = 0 (solid curve, finite-viscosity solution; dotted, finite-viscosity solution with
linear two-dimensional mode; dashed, viscous limit solution; dot-dashed, inviscid solution).

case, it is convenient to study the effect of the viscosity by choosing

κ̂ = κ0, (10.1)

so that

κob/κ̂ = 4/5, κ0/κ̂ = 1, (10.2)

from (6.41). The system of equations (6.19), (6.22)–(6.24), (6.33) and (6.34) with (6.28)
and (6.37), or the equivalent amplitude equations (8.2) and (8.3) with (6.37), contain
four controllable parameters: λ̃, which accounts for the viscous effect; |a(0)|, which
accounts for the initial magnitude of the oblique-mode amplitude; arg(a(0)), which
accounts for the initial phase of the oblique-mode amplitude; and κ̄i, which accounts
for the effect of the initial wavenumber detuning. The normalized initial amplitude of
the plane wave is one as in (6.37). The effect of each of these parameters is discussed
below.

Figure 2 shows the numerical results for λ̃ = 103, |a(0)| = 0.01, arg(a(0)) = 0 and

κ̄i = 0. The solutions of the inviscid amplitude equations (λ̃ = 0) with the same initial
conditions are plotted as the dot-dashed curve. The scaled amplitudes initially exhibit
linear growth. The plane-wave amplitude continues to grow linearly and it reaches
a level that produces a parametric-resonance growth in the oblique modes, which
then allows them to grow until they become large enough to interact with themselves
(self-interaction). The scaled amplitudes of both the oblique and plane waves then
exhibit a rapid increase in growth and ultimately end in a singularity. The viscosity
does not alter the general behaviour of the solution, but it delays the onset of the
parametric-resonance and self-interaction and also the appearance of the singularity.

The solution of the oblique-mode amplitude equation (8.2) for the same initial
conditions, but with the plane wave Ã0 constrained to grow linearly (i.e. Ã0 = ex̄), is
also plotted in figure 2 as the dotted curve (a straight dotted line for the plane-wave
amplitude is not plotted). Comparing the solid curve with the dotted one for the
oblique mode, we can note that the oblique-mode growth rate of the solid curve
(with full plane-wave equation) is slightly decreased at the start of the fully coupled
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Figure 3. (a) ln |Ã| vs. x̄ and (b) ln |Ã0| vs. x̄: |a(0)| = 0.01, arg(a(0)) = 0, κ̄i = 0 and

λ̃ = 0, 1, 10, 102, 103, 104, curves (i)–(vi) respectively (solid, finite-viscosity solution; dotted, vis-
cous-limit solution).

interaction stage where x̄ is about 10.7. This is due to the mutual-interaction and
back-reaction terms in the plane-wave amplitude equation or the integral term, which
represents the nonlinear jump across the critical layer, on the right-hand side of (6.34).

The dashed curve in figure 2 is obtained by solving the viscous-limit equations
(8.6) and (8.7). The plane-wave amplitude grows linearly although we do not show
a dashed line for that. The parametric resonance growth rate of the oblique mode
obtained from the non-equilibrium equations is smaller than that predicted by the
viscous-limit equations.
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|a(0)| = 1, 10−1, 10−2, 10−3, 10−4, curves (i)–(v) respectively (solid, finite-viscosity solution; dotted,
viscous-limit solution).

Figure 3 illustrates the effect of the viscosity. The viscous parameter λ̃ is varied from
0 (inviscid) to 104 while |a(0)| = 0.01, arg(a(0)) = 0 and κ̄i = 0 remain unchanged. The
corresponding solutions of the viscous-limit equations are plotted as dotted curves
(a straight dotted line is not plotted in figure 3b). The difference between the non-
equilibrium critical-layer solution and the quasi-equilibrium critical-layer solution
becomes smaller, at least in the parametric-resonance region, as λ̃ becomes larger.
The parametric-resonance growth rates of the viscous-limit solutions are always larger
than those of the corresponding finite viscous non-equilibrium solutions. Curves (vi)
corresponding to λ̃ = 104 show that the non-equilibrium solution of the oblique mode
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Figure 5. (a) ln |Ã| vs. x̄ and (b) ln |Ã0| vs. x̄, for λ̃ = 103, |a(0)| = 0.01, κ̄i = 0 and
arg(a(0)) = 0, π/4, π/2, 13π/18, curves (i)–(iv) respectively (solid, finite-viscosity solution; dotted,
viscous-limit solution).

qualitatively agrees with the corresponding viscous-limit solution until the end of
the first oscillation or until x̄ is about 12.7 for the solid curve. However, the scaled
amplitudes of both the oblique and plane waves always end in a singularity at a finite
downstream position even though the viscous parameter is very large.

These numerical results are consistent with the results of Goldstein (1994) and Wu
et al. (1997), who show that the final critical layer becomes of non-equilibrium type
although the critical layer in the earlier stage is of quasi-equilibrium type. However,
both analyses did not start with the same initial amplitudes of the resonant triad
as those in Mankbadi et al. (1993). The initial amplitude of the oblique mode was
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Figure 6. (a) ln |Ã| vs. x̄ and (b) ln |Ã0| vs. x̄, for λ̃ = 103, |a(0)| = 0.01, arg(a(0)) = 0 and
κ̄i = 0, 1, 2, 4, 8, curves (i)–(v) respectively (solid, finite-viscosity solution; dotted, viscous-limit
solution).

sufficiently smaller in the former case and that of the plane wave was negligibly smaller
in the latter case. The present computational results with large values of λ̃, shown in
figure 3, indicate that the later stage of the evolution of the viscous resonant triad
considered by Mankbadi et al. (1993) (we can also add a small non-zero pressure
gradient as discussed in §3 and §8) will also be governed by the non-equilibrium
critical-layer dynamics. The solutions of the quasi-equilibrium amplitude equations
of Mankbadi et al. (1993) correspond to the dotted curves in figure 3 (except the
modified linear growth rates).

Figure 4 shows the effect of varying the normalized initial oblique-mode amplitude
|a(0)|. The viscous parameter λ̃ = 103, and arg(a(0)) and κ̄i are set equal to zero. The
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Figure 7. (a) ln |Ã| vs. x̄, and (b) ln |Ã0| vs. x̄, for λ̃ = 103, |a(0)| = 0.01, arg(a(0)) = 0 and
κ̄i = 0,−1,−2,−4,−8, curves (i)–(v) respectively.

net effect of reducing |a(0)| is to delay both the onset of the fully coupled interaction
and the ultimate downstream location of the singularity.

Figure 5 shows the effect of varying arg(a(0)), the argument of a(0). Here we put
λ̃ = 103, |a(0)| = 0.01 and κ̄i = 0. The results for arg(a(0)) = 0 are almost identical to
the arg(a(0)) = 1

2
π rad results. As in the inviscid calculations of G&L, the onset of

the fully coupled interaction and the position of the singularity occur at the earliest
downstream location when arg(a(0)) = 1

4
π rad.

Figures 6 and 7 illustrate the effect of initial wavenumber detuning. We have fixed
λ̃ = 103, |a(0)| = 0.01 and arg(a(0)) = 0. The results are similar to the inviscid results
of G&L in that increasing the initial wavenumber detuning delays the growth in the
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Figure 8. Ã′/Ã vs. a0 in the parametric-resonance region
(solid, non-equilibrium solution; dashed, quasi-equilibrium solution).

oblique-mode amplitude and moves both the onset of the fully coupled stage and the
singularity position further downstream. The oblique-mode amplitudes grow almost
linearly, but exhibit oscillations, in the parametric-resonance stage when κ̄i is large.

10.2. Numerical results for the negligibly small linear-growth-rate case

In a Blasius boundary layer (Goldstein 1994), an initial parametric-resonance growth
of quasi-equilibrium type is often followed by a non-equilibrium-type interaction
before the self-interaction effects become important. It was shown in §9 (Wundrow
et al. 1994; Goldstein 1994) that the linear growth terms are negligibly small in the
fully coupled non-equilibrium region and that the upstream condition (9.3) should be
used instead of (6.37).

Putting

κ̂ = λ̄1/3, (10.3)

leads to

λ̃ = 1, (10.4)

from (6.16), which means that the viscous parameter can be scaled out of the final
equations. The system of equations (6.19), (6.22)–(6.24), (6.33) and (6.34) with (6.28)
and (9.3), or the equivalent amplitude equations (8.2) and (8.3) with (9.3), when
the linear growth terms are omitted and κ̄i = 0, now contain only one controllable
parameter, a0.

Figure 8 shows the oblique-mode growth rate, Ãx̄/Ã (or b which is given by (9.4)),
in the parametric-resonance region as function of the nearly constant plane-wave
amplitude, a0. The solution of (9.5) without the linear growth term and with Ã0 = a0

is plotted as a solid curve. The dashed curve represents the viscous-limit solution,
Ãx̄/Ã = 1

5
a0, which is obtained from (8.6) with the linear-growth and self-interaction

terms omitted. This figure shows that the oblique-mode growth rates obtained from the
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non-equilibrium equation with finite viscosity are always lower than those predicted
by the quasi-equilibrium critical-layer equations in the parametric-resonance regime.
This is consistent with the result obtained for the O(1) linear-growth-rate case as given
in figures 2 and 3. Khokhlov (1993) showed that the solutions of the non-equilibrium
critical-layer equations are in reasonably good agreement with the experimental results
of Kachanov, Kozlov & Levchenko (1977) and Kachanov & Levchenko (1984) in the
parametric-resonance stage.

Figure 9 illustrates the effect of varying a0. In the non-equilibrium parametric
resonance region the plane-wave amplitude Ã0 remains constant but the oblique-mode
amplitude Ã continues to exhibit parametric-resonance growth until these modes
become large enough to interact with themselves. This self-interaction produces a
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further enhancement in their growth, which ends in a singularity at a finite downstream
position. This explosive growth is then transferred to the plane wave through the
mutual-interaction and back-reaction terms. The oblique-mode growth rate in the
parametric-resonance stage increases with a0. The plane-wave and oblique-mode
amplitudes both become singular at a finite downstream position as in the O(1)
linear-growth-rate case.

The author would like to thank Dr Lennart S. Hultgren for suggesting him solving
the partial differential critical-layer equations directly by using numerical methods
and Drs M. E. Goldstein, David W. Wundrow, S. J. Leib, Lennart S. Hultgren and
R. R. Mankbadi for many helpful discussions. Drs S. J. Cowley and X. Wu are also
thanked for their useful comments.

Appendix A. Coefficients J1, J2, J3, J4 and J5 in (4.17)

J1 =

∫ ∞
0

[
U2 − 1

U2
+

1

τ2
wy

2
− σr−1 µ̄

τ3
wy(y + 1)

]
dy, (A 1)

J2 =

∫ ∞
0

[
− 1

U3
+

2

U2
−U +

1

τ3
wy

3
− 2

τ2
wy

2
− σr−1 3µ̄

2τ4
wy

2
+ . . .

]
dy, (A 2)

J3 =

∫ ∞
0

[
1− 3

U4
+

8

U3
− 6

U2
+

3

τ4
wy

4
− 8

τ3
wy

3

+
6

τ2
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2
+

τ2
0

4τ5
wy(y + 1)

− σr−1 6µ̄

τ5
wy

3
+ . . .

]
dy, (A 3)

J4 =

∫ ∞
0

U2

∫ ∞
y

(
U2 − 1

U2

)
dŷdy, (A 4)

J5 = lim
y,ĉ→0

(
∂Ω1

∂ĉ
+
γ̄

c̄
Ω2

)
. (A 5)

Appendix B. Normalization and the critical-layer equation
The dependent variables in (6.19), (6.21) and (6.22) are normalized as

Q̃(1) = (YcM)1/2/(κ̂2c̄ sin θ)Q(1)eiX0/2, (B 1){
Q̃(l)
n,m, Q̃

(4L)
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(l)
n,m

}
=
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(4L)
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}
einX0/2, (B 2)

where
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1,1 = (2πᾱ)1/2M cos θ/(κ̂2τ1/2
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(3)
3,1

}
=

c̄M3/2 cos θ

κ̂3Y
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Q̂

(4)
2,0, Q̂

(4L)
2,0

}
= 2πᾱM/(κ̂4τ3

wc̄)
{
Q

(4)
2,0 − Q
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2,0 , Q

(4L)
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, (B 6)

W
(3a)
1,1 and Q

(4a)
2,0 are the terms which do not play any active role in calculating the

velocity jump across the critical layer, and Q(4L)
2,0 is the term which produces the linear

velocity jump across the critical layer for the two-dimensional mode.
The critical-layer equations (6.22) are obtained by substituting (B 1)–(B 6) along

with (6.15) into equations (5.37)–(5.40) and Appendix B of G&L. For notational
simplicity, we have omitted the tilde on η̃, Ã, Ã0, Q̃

(1), Q̃(l)
n,m, Ũ(l)

n,m, Ṽ (l)
n,m, W̃ (l)

n,m, and q̃
(3)
n,1

in the following equations of this Appendix. The expressions for the terms on the
right-hand sides of (6.22) are

G
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where the asterisks denote the complex conjugates, Im denotes the imaginary part,
and

τ ≡ c̄/(τwYc) (B 17)

becomes unity when (4.19) is used.
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Appendix C. The Kernel function K2 in (8.2)

K2 =−E(t1; t2)

{
(2t1 + t2)t

2
1 + 2 sin2 θ

∫ t2

0

E(t3; t1)t1(t1 + 2t2 − 2t3)dt3

}
+2(sin2 θ)E(t1; t2)

∫ t1

0

{[
E(t3; t1)/E(t3; 0) + E0(t1, t2, t3|0)

]
(t1 − t3)(t1 + 2t2 + 3t3)

−2
[
E3/8(t2;

4
3
t1)E

1/4(t2 + 2t3; 2t1 + t2)
] [

1 + 2λ̃(t1 − t3)(t1 + t2 + t3)
2
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t2t3 + 4 sin2 θ
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I(t1, t2, t3|t2) + I(t1, t2, t3|0)

]}
dt3, (C 1)

where

t1 ≡ x̄− x1, t2 ≡ x1 − x2, (C 2)

E(tm; tn) ≡ e−λ̃(2tm/3+tn)t
2
m , (C 3)

E0(t1, t2, t3|t̂) ≡ e−λ̃[(t1+t2−t̂)(t2+t3−t̂)2−(t2−t̂)3/3], (C 4)

I(t1, t2, t3|t̂) ≡
∫ t3+t̂

0

E0(t1, t2, t3|t̂)E(t4; t1 + t2 − t̂)

×(t4 − t3 − t̂)
[
1 + 2λ̃(t1 − t3)(t2 + t3 − t̂)2

]
dt4. (C 5)
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